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We discuss the relation of the excess specific heat, the excess energy per area, and the thermodynamic
Casimir force in thin films. A priori these quantities depend on the reduced temperature t and the thickness L0

of the film. However finite-size scaling theory predicts that the scaling functions h��x�, h��x�, and ��x� of these
quantities depend only on the combination x= t�L0 /�0�1/�, where � is the critical exponent and �0 the amplitude
of the correlation length. Furthermore, the finite-size scaling function ��x� of the thermodynamic Casimir force
per area can be expressed in terms of the scaling functions h��x� and h�x� of the excess energy per area and the
excess free energy per area. Here we study this relation at the example of thin films of the improved two-
component �4 model on the simple cubic lattice. Note that this model undergoes a second-order phase tran-
sition that belongs to the three-dimensional XY universality class. First we simulate films with periodic
boundary conditions in the short direction and a thickness up to L0=13 lattice spacings. We find that even for
these rather thin films, the predictions of finite-size scaling are well satisfied. We repeat the analysis for films
with free boundary conditions. To this end we use Monte Carlo data for the energy per area obtained in
previous work. It turns our that corrections to scaling caused by the boundary conditions are very prominent in
this case. Only by taking into account these corrections we are able to obtain ��x� from the excess energy.
Finally we repeat this exercise using experimental data for the excess specific heat of 4He films near the �

transition. The finite-size scaling behavior of the excess specific heat is governed by h��x�, which is propor-
tional to the scaling function f2 discussed in the literature.
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I. INTRODUCTION

In 1978 Fisher and de Gennes1 realized that when thermal
fluctuations are restricted by a container a force acts on the
walls of the container. Since this effect is rather similar to the
Casimir effect, where the restriction of quantum fluctuations
induces a force, it is called “thermodynamic” Casimir effect.
Since thermal fluctuations only extend to large scales in the
neighborhood of a continuous phase transitions it is also
called “critical” Casimir effect. Recently this effect has at-
tracted much attention since it could be verified for various
experimental systems and quantitative predictions could be
obtained from Monte Carlo simulations of spin models.2

In the thermodynamic limit of the three-dimensional sys-
tem, the correlation length, which measures the spatial ex-
tension of fluctuations, diverges following the power law

� � �0,��t�−�, �1�

where t= �T−Tc� /Tc is the reduced temperature and Tc the
critical temperature. �0,+ and �0,− are the amplitudes of the
correlation length in the high- and low-temperature phase,
respectively. The symbol � means asymptotically equal; cor-
rections vanish as t→0. While �0,+ and �0,− depend on the
microscopic details of the system, the critical exponent � and
the ratio �0,+ /�0,− are universal. At the critical point also
other quantities such as the specific heat show a singular
behavior,

C � A��t�−� + B . �2�

In the case of the XY universality class that we consider
here, the exponent �=−0.151�3� �Ref. 3� of the specific heat
is negative. Therefore the analytic background B has to be

taken into account. Note that the critical exponents of the
correlation length and the specific heat are related by the
hyperscaling relation �=2−d�, where d is the dimension of
the system. For reviews on critical phenomena and its mod-
ern theory, the renormalization group �RG�, see, e.g., Refs.
4–7.

The singular behavior at the critical point originates from
the fact that thermal fluctuations range over all length scales.
Therefore the behavior in the neighborhood of the critical
point is modified if the system is confined by a container. A
priori thermodynamic quantities are functions of the reduced
temperature and the size L0 of the container, assuming a
fixed geometry. However the theory of finite-size scaling8,9

predicts that the physics of the system is governed by the
ratio L0 /� as long as L0 ,�	a, where a is the microscopic
scale of the system. In particular, if a quantity in the thermo-
dynamic limit behaves as A�a0,��t�−w, finite-size scaling
predicts that A�L0 , t��L0

w/�g̃�L0 /��, where w is the critical
exponent of A and � the correlation length of the bulk sys-
tem. We can rewrite this equation as

A�L0,t� � L0
w/�g�t�L0/�0,+�1/�� �3�

by using Eq. �1�, which is the form used in the following.
Note that in Eq. �3� we take �0,+ for both t
0 and t�0.
Choosing �0,+ and not �0,− here, we follow the literature.
Typically �0,+ can be more accurately determined than �0,−.
Below �0 always means �0,+. Note that the function g de-
pends on the geometry of the container and on the type of
boundary conditions that is imposed by its walls on the order
parameter of the system.
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The predictions of finite-size scaling theory have been
tested in experiments and theoretical studies for various uni-
versality classes and confining geometries; for reviews see
Refs. 8 and 9. Here we shall focus on thin films in the three-
dimensional XY universality class, which is shared by the �
transition of 4He. Very precise experimental results for criti-
cal exponents and universal amplitude ratios were obtained
for this phase transition.10 Also a large number of experi-
ments on thin films of 4He and 3He-4He mixtures were per-
formed to probe finite-size scaling.11 In particular, the spe-
cific heat of thin films has been studied. The excess specific
heat should behave as

Cbulk�t� − C�L0,t� � L0
�/�f2�t�L0/�0�1/�� . �4�

The reason to study the excess specific heat rather than just
the specific heat C�L0 , t� is to cancel the analytic background
B. Note that the scaling function f2�x� of the excess specific
heat is, up to a constant factor, the second derivative h��x� of
the scaling function h�x� of the excess free energy per area

f̃ ex = f̃ f ilm�L0,t� − L0 f̃ bulk�t� � kBTL0
−d+1h�t�L0/�0�1/�� , �5�

where f̃ f ilm�L0 , t� is the free energy per area of the thin film,

f̃ bulk�t� the free energy density of the bulk system, d=3 the
dimension of the system. Note that in the case of thin films
we consider, following the literature on the thermodynamic
Casimir effect, free energies per area. We hope that this does
not lead to confusion, since in the case of the specific heat,
energies per volume are considered.

From a thermodynamic point of view, the thermodynamic
Casimir force per area is given by

FCasimir = −
� f̃ ex

�L0
, �6�

where L0 is the thickness of the film. Inserting the finite-size
scaling ansatz �5� for the excess free energy into Eq. �6� we
get

FCasimir � − kBT
��L0

−2h��t�L0/�0�1/����
�L0

= − kBTL0
−3	− 2h�t�L0/�0�1/��

+
1

�
t�L0/�0�1/�h��t�L0/�0�1/��


= kBTL0
−3��t�L0/�0�1/�� , �7�

where

��x� = 2h�x� −
x

�
h��x� . �8�

This relation is well known and can be found, e.g., in Ref.
12. We like to emphasize that Eq. �7� relies on the fundamen-
tal assumption that finite-size scaling functions depend only
on the scaling variable x= t�L0 /�0�1/� and not on t and L0
separately. The amazing consequence is that apparently com-
pletely different physical quantities such as the thermody-
namic Casimir force and the excess specific heat of thin films

are governed by the same scaling function h�x�.
The purpose of the present work is to probe Eqs. �7� and

�8� using numerical data from Monte Carlo simulations of a
lattice model and experimental data obtained for films of
4He. To this end we compute h��x� from data for the excess
energy or h��x� from data for the excess specific heat. Using
numerical integration we then arrive at estimates for h�x� or
h��x� and h�x�, respectively. Using Eqs. �7� and �8� we finally
arrive at an estimate for ��x�. This estimate is compared with
��x� computed from data for the thermodynamic Casimir
force, Eq. �6�. The mismatch of these two estimates of ��x�
allows us to quantify corrections to scaling that have not
been taken into account in the analysis of the data. Or, if
these deviations do not decrease with increasing thickness L0
of the film, disprove finite-size scaling.

First we have studied films with periodic boundary con-
ditions. To this end we have simulated the improved two-
component �4 model on the simple cubic lattice, where im-
proved means that leading corrections �L0

−, with �0.8,
are eliminated. We find that corrections to scaling are small
for the lattices sizes L=8, 9, 12, and 13 that we have simu-
lated. Also the results for ��x� obtained by the two alternative
approaches are consistent. We compare our final result for
the scaling function ��x� for periodic boundary conditions
with previous Monte Carlo simulations13,14 and field theo-
retic results.15,16

Next we analyze data for the energy density that were
obtained in Ref. 17 from simulations of the improved two-
component �4 model on the simple cubic lattice. In Ref. 17
these data were used to compute the specific heat. In order to
get a vanishing order parameter as it is observed at the
boundaries of 4He films, Dirichlet boundary conditions with
vanishing field were imposed. In singular quantities these
lead to corrections �L0

−1,18 which can be expressed by an
effective thickness L0,ef f =L0+Ls. In Ref. 19 we find Ls
=1.02�7� for the model that we consider here. Note that the
boundary conditions also affect the analytic background of
the specific heat and the energy density, which also leads to
corrections �L0

−1. However it turns out that these corrections
are not given by the same L0,ef f as for the singular quantities.
Taking into account these subtleties we arrive at accurate
results for h��x�, h�x�, and ��x�. In particular, for ��x� in the
range −15�x�4 we find a good match with our previous
result,20,21 where we computed the Casimir force by taking
the derivative of the excess free energy with respect to the
thickness L0 of the film. In Ref. 20 we have compared our
result for ��x� with previous ones obtained from simulations
of the XY model14,22,23 and experiments on thin films of
4He;24,25 overall we find a reasonable agreement.

Finally we compute ��x� by using experimental results for
the excess specific heat obtained from experiments on thin
films of 4He.26,27 For −5�x�4 we find a reasonable match
with our result,20 which is essentially consistent with the
experiments on the thermodynamic Casimir force.24,25 How-
ever in the low-temperature phase, for x�−5 we get results
that strongly deviate from Ref. 20 and can even be ruled out
by plausibility. This corroborates the observation that in the
low-temperature phase for x�−5 the data for the excess spe-
cific heat do not scale well.11

This paper is organized as follows: first we define the
model and the observables that we consider. Next we discuss
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the finite-size scaling behavior of the free energy per area. In
particular, we discuss corrections to scaling caused by Di-
richlet boundary conditions. In Sec. IV we analyze our
Monte Carlo data for films with periodic boundary condi-
tions. In Sec. V we compute h��x�, h�x�, and ��x� using the
data for the energy per area of thin films with Dirichlet
boundary conditions obtained in Ref. 17. The result for ��x�
is compared with the one that we20 obtained directly from the
thermodynamic Casimir force. Next in Sec. VI we compute
��x� starting from data for the excess specific heat of films of
4He in the neighborhood of the � transition. Finally we sum-
marize and conclude.

II. MODEL AND THE OBSERVABLES

We study the two-component �4 model on the simple
cubic lattice. We label the sites of the lattice by x
= �x0 ,x1 ,x2�. The components of x might assume the values
xi� �1,2 , . . . ,Li�. We study the thin-film geometry character-
ized by L0�L1=L2=L. In this work we have simulated lat-
tices with periodic boundary conditions in all three direc-
tions. Furthermore we analyze data obtained in Ref. 17 for
thin films with free boundary conditions in the zero direc-
tion. The Hamiltonian of the two-component �4 model, for a
vanishing external field, is given by

H = − � �
x,y�

�� x · �� y + �
x

��� x
2 + ���� x

2 − 1�2� , �9�

where the field variable �� x is a vector with two real compo-
nents. x ,y� denotes a pair of nearest-neighbor sites on the
lattice. The partition function is given by

Z = �
x
�� d�x

�1�� d�x
�2��exp�− H� . �10�

Note that following the conventions of our previous work,
e.g., Ref. 28 we have absorbed the inverse temperature �
into the Hamiltonian. Therefore, following Ref. 6 we actu-
ally should call it reduced Hamiltonian. In the limit �→�
the field variables are fixed to unit length; hence the XY
model is recovered. For �=0 we get the exactly solvable
Gaussian model. For 0���� the model undergoes a
second-order phase transition that belongs to the XY univer-
sality class. Numerically, using Monte Carlo simulations and
high-temperature series expansions, it has been shown that
there is a value ���0, where leading corrections to scaling
vanish. Numerical estimates of �� given in the literature are
��=2.10�6�,29 ��=2.07�5�,28 and most recently ��=2.15�5�.3
The inverse of the critical temperature �c has been deter-
mined accurately for several values of � using finite-size
scaling.3 We shall perform our simulations at �=2.1 since for
this value of � comprehensive Monte Carlo studies of the
three-dimensional system in the low- and the high-
temperature phase have been performed.3,19,30,31 At �=2.1
one gets �c=0.5091503�6�.3 Since �=2.1 is not exactly
equal to ��, there are still corrections �L−, although with a
small amplitude. In fact, following,3 it should be by at least a
factor 20 smaller than for the standard XY model.

In Ref. 19 we find for �=2.1 by fitting the data for the
second moment correlation length in the high-temperature

phase �2nd�0.26362�8�t−0.6717, where t=0.5091503−�. We
shall use this definition of the reduced temperature also in
the following discussion of our numerical results; Hence �0
=0.26362�8�. Note that in the high-temperature phase there
is little difference between �2nd and the exponential correla-
tion length �exp which is defined by the asymptotic decay of
the two-point correlation function. Following28 limt→0

�exp

�2nd

=1.000204�3� for the thermodynamic limit of the three-
dimensional system. Hence at the level of precision reached
here it does not matter whether �0,exp or �0,2nd is used in the
scaling variable x= t�L0 /�0�1/�.

Internal energy and the free energy

The reduced free energy density is defined as

f = −
1

L0L1L2
ln Z . �11�

This means that compared with the free energy density f̃ , a
factor kBT is skipped.

Note that in Eq. �9� � does not multiply the second term.
Therefore, strictly speaking, � is not the inverse of kBT. In
order to study universal quantities it is not crucial how the
transition line in the �-� plane is crossed, as long as this path
is not tangent to the transition line. Therefore, following
computational convenience, we vary � at fixed �. Corre-
spondingly we define the �internal� energy density as the
derivative of the reduced free energy density with respect to
�. Furthermore, to be consistent with our previous work,17

we multiply by −1,

E =
1

L0L1L2

� ln Z

��
. �12�

It follows

E =
1

L0L1L2
��

x,y�
�� x · �� y� , �13�

which can be easily determined in Monte Carlo simulations.
From Eqs. �11� and �12� it follows that the free energy den-
sity can be computed as

f��� = f��0� − �
�0

�

d�̃E��̃� . �14�

In the context of thin films we consider energies and free
energies per area. Also these are denoted by E and f . This
should not lead to confusion since it is always clearly indi-
cated in the text.

III. FINITE-SIZE SCALING BEHAVIOR OF THE FREE
ENERGY

Let us briefly discuss the scaling behavior of the reduced
excess free energy per area. Since we study an improved
model we ignore corrections �L0

− in the following. We take
into account leading corrections due to free boundary condi-
tions by replacing the thickness L0 of the film by L0,ef f =L0
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+Ls at the appropriate places. We split the free energies in
singular �s� and nonsingular �ns� parts,

fex�t,L0� = f film�t,L0� − L0fbulk�t� = f film,s�t,L0� + L0,ef f ,nsfns�t�

− L0fbulk,s�t� − L0fns�t� = L0,ef f
−2 h�x� + Lsfbulk,s�t�

+ Lsnsfns�t� , �15�

where

h�x� = L0,ef f
2 �f film,s�t,L0� − L0,ef f fbulk,s�t�� �16�

is a universal finite-size scaling function and x
= t�L0,ef f /�0�1/�. Following RG theory the nonsingular part is
not affected by finite-size effects. However it is not clear a
priori how Dirichlet boundary conditions affect the nonsin-
gular part of the free energy. Therefore we allow for Lsns
=L0,ef f ,ns−L0�0 and Lsns�Ls. Taking the derivative with re-
spect to L0 we get the thermodynamic Casimir force per
area12

�FCasimir = −
� fex�t,L0�

�L0
= 2L0,ef f

−3 h�x� − L0,ef f
−3 1

�
xh��x�

= L0,ef f
−3 ��x� , �17�

where

��x� = 2h�x� −
1

�
xh��x� . �18�

Note that the boundary terms Lsfbulk,s and Lsnsfns do not con-
tribute to the Casimir force.

IV. FILMS WITH PERIODIC BOUNDARY CONDITIONS

As preparation we have studied films with periodic
boundary conditions in all directions. In contrast to free
boundary conditions, there are no corrections to finite-size
scaling caused by the boundaries. Therefore the analysis of
the data should be much simpler for periodic boundary con-
ditions than for free ones.

We have simulated films of the thicknesses L0=8, 9, 12,
and 13. First we have located the Kosterlitz-Thouless �KT�
transition32 of the films. To this end we have used the match-
ing method discussed in Ref. 33 and applied to thin films
with free boundary conditions in Ref. 19.

Then we have simulated the films for a large number of �
values in the critical region. We have measured the energy
per area of the films. Using the energy density of the three-
dimensional bulk system obtained in Ref. 17 we obtain the
excess energy per area. Using these data, we compute the
finite scaling functions h��x� and h�x�. By using Eq. �8� we
obtain ��x�. For comparison we have computed the thermo-
dynamic Casimir force by using Eq. �6�. To this end, we have
approximated the derivative of the excess free energy per
area by finite differences.

In our simulations one update cycle consists of one Me-
tropolis sweep, two over-relaxation sweeps and a number of
single cluster34 updates. As random number generator we
have used the SIMD-oriented Fast Mersenne Twister
algorithm.35

A. Kosterlitz-Thouless transition

The basic idea of the matching method discussed in Ref.
33 is to compare the finite-size scaling behavior of the
Binder cumulant U4 and the second moment correlation
length over the lattice size �2nd /L in thin films with that of
two-dimensional XY models at the KT transition. To this end
we have simulated lattices of the sizes 8�8002, 9�8002,
12�12002, and 13�12002. As check, we have simulated in
addition a lattice of the size 12�4802. We performed about
105 update cycles in each case. These simulations took about
2 month of CPU time on a single core of a Quad-Core
Opteron™ 2378 CPU �2.4 GHz�. We find �KT=0.52705�2�,
0.52413�2�, 0.51888�2�, and 0.51778�2�, for L0=8, 9, 12,
and 13, respectively. Note that our estimates of �KT for
L0=12 obtained from L=480 and L=1200 are consistent
within error bars. These results correspond to xKT= ��c
−�KT��L0 /�0�1/�=−2.880�3�, −2.872�4�, −2.863�6�, and
−2.860�7�. These results vary only little with L0, indicating
that corrections to scaling are numerically small. We quote
xKT=−2.86�2� as result for the scaling limit L0→�.

This result can be compared with that of Schultka and
Manousakis36 who have studied the standard XY model.
They have simulated films with periodic boundary conditions
of the thicknesses L0=3, 4, 6, 8, 10, and 12. They find for the
scaling limit L0

1/��TKT−Tc� /Tc=−0.9965�9�. Using �0
=0.4894�5� �Ref. 19� we arrive at xKT=−2.887�1�, which is
in reasonable agreement with our present result. Note that in
the case of free boundary conditions, in the scaling limit, the
KT transition takes place at xKT=−7.48�3�.19

B. Scaling functions of the excess energy and the
thermodynamic Casimir force

In our simulations we determined the energy E�L0 ,�� per
area for lattices of the thicknesses L0=8, 9, 12, and 13 for a
large number of � values in the neighborhood of the critical
temperature. In particular, we have simulated L0=8 and 9 at
55 � values in the interval 0.35���0.565 and L0=12 and
13 at 73 � values in the interval 0.42���0.568. We have
used large values of L to keep finite L effects under control.
In particular, for L0=12 and 13 we have simulated lattices up
to L=2400. We performed 105 up to 106 update cycles, de-
pending on the lattice size. In total we have used about 4
month of CPU time on a single core of a Quad-Core
Opteron™ 2378 CPU �2.4 GHz�. In order to compute the
excess energy per area

Eex�L0,�� = E�L0,�� − L0Ebulk��� �19�

we have used the results for Ebulk��� obtained in Sec. 4.1 of
Ref. 17. In Fig. 1 our results for EexL0

2�L0 /�0�−1/� are plotted
as a function of t�L0 /�0�1/�. The data points for L0=8, 9, 12,
and 13 fall nicely on top of each other.

Next we have computed the scaling function ��x� by us-
ing Eq. �8�. To this end we have integrated h��x�
�EexL0

2�L0 /�0�−1/� by using the trapezoidal rule to obtain the
scaling function of the excess free energy per area h�x�. We
have started the integration at x�25 in the high-temperature
phase, where h��x� is vanishing within our statistical errors.
In order to estimate the systematical error due to the finite
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step size of the trapezoidal rule we have redone the integra-
tion, skipping every second value of x; i.e., doubling the step
size. We find that the results are consistent within the statis-
tical errors. Therefore the systematical error due to the finite
step size should be of similar size or smaller than the statis-
tical one.

The results for ��x� are given in Fig. 2. The data points for
L0=8, 9, 12, and 13 fall nicely on top of each other. This is
not too surprising since already for the excess energy we
have seen a very good collapse of the data.

Next we have computed

�Eex�L0,�� = E�L0 + 1/2,�� − E�L0 − 1/2,�� − Ebulk���
�20�

for L0=8.5 and L0=12.5. Going to high or low temperatures
�Eex�L0 ,�� vanishes within error bars. Starting at high tem-
peratures �Eex�L0 ,�� is decreasing with decreasing x until a
minimum is reached at x�2.7. Then at x�0 a local maxi-

mum is assumed. The value of �Eex�L0 ,�� at this maximum
is still negative. At a slightly smaller value of x there is a
local minimum. Then at x�−2.2 the global maximum is
reached.

Using the trapezoidal rule we compute

− �fex�L0,�� = �
�0

�

d�̃�Eex�L0,�̃� . �21�

As initial values of the integration we have chosen
�fex�8.5,0.35�=0 and �fex�12.5,0.42�=0. At these values of
�, within error bars, �Eex�L0 ,�� is consistent with zero. Also
here we have checked that systematical errors due to the
finite step size of the numerical integration are negligible.
Our results are plotted in Fig. 3. Here we see a small dis-
crepancy between the results obtained from L0=8.5 and L0
=12.5. Finally, in Fig. 4 we compare the results obtained
from the two different approaches. In both cases we have
plotted only the result obtained from the largest thickness,
i.e., L0=13 and L0=12.5, respectively. These two results are
consistent within error bars. Since corrections to scaling
should be different in the two approaches, this gives us fur-
ther confirmation that corrections to scaling are at most of
similar size as our statistical errors.

Now let us discuss some characteristic features of ��x�:
throughout ��x� assumes negative values. In the high-
temperature phase our results are consistent with the theoret-
ical expectation that the thermodynamic Casimir force van-
ishes at sufficiently large x. In contrast, in the low-
temperature phase ��x� approaches a constant nonvanishing
value. Averaging our results for L0=12 and 13 and L0
=12.5 we arrive at �low=−0.384�10�. The authors of Ref. 14
obtain from their simulations of the standard XY model
�low=−0.383�3�. These results are fully consistent with the
exact result of the spin-wave approximation �low=−��3� /�
=−0.3826. . ..14

The function ��x� assumes a single minimum. The posi-
tion of this minimum is given by the zero of �Eex�L0 ,��. We
find xmin=−1.206�18� and xmin=−1.20�3� for L0=8.5 and
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FIG. 1. �Color online� We plot EexL0
2�L0 /�0�−1/� as a function of

t�L0 /�0�1/� for L0=8, 9, 12, and 13 for periodic boundary condi-
tions. For a discussion see the text.
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FIG. 2. �Color online� We plot 2h�x�− x
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approximated by Eex�L0 ,��L0
2�L0 /�0�−1/�, as a function of

t�L0 /�0�1/� for L0=8, 9, 12, and 13 for periodic boundary condi-
tions. For a discussion see the text.

-20 -10 0 10 20 30
t (L / )0 0ξ 1/ν

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-L
f e

x
03

∆ L = 8.50
L =12.50

FIG. 3. �Color online� We plot −L0
3�fex�L0 ,�� as a function of

t�L0 /�0�1/� for L0=8.5 and 12.5 for periodic boundary conditions.
For a discussion see the text.
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L0=12.5, respectively. For the scaling limit we quote xmin=
−1.20�5�, where the error also should include systematical
errors due to corrections to scaling. The value of the scaling
function at its minimum is given by �min=−0.66�2�.

At the critical point of the bulk system we get 2h�0�=
−0.607�2�, −0.606�3�, −0.599�6�, and −0.601�7� for L0=8, 9,
12, and 13, respectively. The other method provides us with
−L0

3�fex�L0 ,�c�=−0.628�5� and −0.612�7� for L0=8.5 and
12.5, respectively. We conclude ��0�=−0.60�2� for the scal-
ing limit.

C. Previous simulations and field theoretic results

Dantchev and Krech13 have simulated the standard XY
model. The thicknesses of the films were L0=16, 20, 24, and
32. They computed ��x�, up to an overall normalization, by
using the stress tensor. They have fixed the missing normal-
ization by imposing ��0�=−0.56, which they have obtained
from theoretical considerations. Qualitatively, their result,
which is presented in Fig. 5 of Ref. 13 is in agreement with
ours. They do not quote results for xmin and ��xmin�.

Also the authors of Ref. 14 have simulated the standard
XY model. They have computed the free energy of thin films
per area. They have studied films of a thickness up to L0
=20. Their results for ��x� are plotted in Fig. 6 of Ref. 14.
Qualitatively, their result agrees with ours. At the critical
point they get ��0�=−0.5986�14� and for the minimum of the
scaling function they quote xmin=−0.73�1� and ��xmin�=
−0.633�1�, where, in particular, xmin is clearly different from
our result.

Krech and Dietrich15 have computed the scaling function
h�x� in the high-temperature phase using the � expansion up

to O���. Later Grüneberg and Diehl16 have extended the cal-
culation up to O��3/2�. In Fig. 4 we have plotted ��x� ob-
tained from the O��3/2� result of Ref. 16. Note that,
following,16 we have evaluated the result for three dimen-
sions by naively setting �=1. The O��3/2� is in quite good
agreement with our numerical data for x�1. For x�1 the
deviation rapidly increases with decreasing x. One should
note that the difference between the O��� result15 and the
O��3/2� result16 is smaller than our error bars ��0.01� for
x�3. The O��� approximation has a minimum at x�0.75.

V. FILMS WITH FREE BOUNDARY CONDITIONS

Here we study thin films with free boundary conditions in
the short direction. These boundary conditions are relevant
for the comparison with experimental results obtained for
thin films of 4He. Most of the Monte Carlo data are taken
from our previous work,17,20 where we have simulated films
of the thicknesses L0=8, 16, and 32. Therefore we refrain
from giving the details of the simulations and refer the reader
to Refs. 17 and 20.

Analogous to the previous section we compute the scaling
function h��x� of the excess energy per area and h�x� of the
excess free energy per area. Using these we obtain the scal-
ing function ��x�=2h�x�− x

�h��x� of the thermodynamic Ca-
simir force.

In Ref. 17 we have taken great care to get the deviations
of the energy per area from its effectively two-dimensional
thermodynamic limit under control. In order to achieve this,
quite large ratios L /L0 are needed in the neighborhood of the
peak of the specific heat. In the case of L0=8 we have simu-
lated lattices of a size up to L=2048, and for L0=16 up to
L=1800. For L0=32 we have skipped the interval 0.5136
���0.516 since we could not simulate sufficiently large
values of L.

In Fig. 5, similar to the previous section, we have plotted
EexL0

2�L0 /�0�−1/� versus t�L0 /�0�1/�. In contrast to the previ-
ous section we find that there is a huge discrepancy between
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FIG. 4. �Color online� We plot ��x�=2h�x�− x
�h��x�, where h��x�

is approximated by Eex�L0 ,��L0
2�L0 /�0�−1/� as a function of

t�L0 /�0�1/� for L0=13 �method 1, red squares�. For comparison we
give ��x��−L0

3�fex�L0 ,�� for L0=12.5 �method 2, black circles�.
In addition we give the result of the � expansion �Ref. 16� �blue
dashed line on the right side of the figure� and the spin-wave result
�horizontal green dashed line on the left side of the figure�. The
vertical dotted line indicates the Kosterlitz-Thouless transition. Pe-
riodic boundary conditions are considered. For a discussion see the
text.
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FIG. 5. �Color online� We plot EexL0
2�L0 /�0�−1/� as a function of

t�L0 /�0�1/� for thin films, where we have used �0=0.26362 and �
=0.6717. Free boundary conditions are considered. For a discussion
see the text.
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the three curves. The dominant effect seems that the curves
are shifted by a constant with respect to each other. Note that
replacing L0 by L0,ef f =L0+Ls with Ls=1.02�7� �Ref. 19� does
change this situation only little. In Sec. III we have argued
that the analytic background of the energy density might suf-
fer from a boundary correction that is not given by the ef-
fective thickness L0,ef f =L0+Ls that describes the leading
boundary corrections of singular quantities. Below we shall
study this question in detail at the critical point of the bulk
system, where we have data for thicknesses up to L0=64
available.

A. Finite-size scaling at the critical point of the bulk system

In order to get a better understanding of the corrections
we have studied in detail the behavior at the critical point of
the three-dimensional bulk system. In the context of Ref. 17
we have simulated lattices of the thickness L0=8, 12, 16, 24,
32, 48, and 64 and L=6L0. In Ref. 17 we have checked that
this choice of L is sufficient to approximate well the effec-
tively two-dimensional thermodynamic limit of the film at
the critical point of the three-dimensional system. Our results
for the energy per area are summarized in Table I.

In the case of periodic boundary conditions in all direc-
tions, the energy density at the critical point behaves as

E�L� = Ens + cL−d+1/�, �22�

where d=3 is the dimension of the system. Using lattices of
the size L0=L1=L2 with L0 up to 128 we find30

Ens = 0.913213�5� + 20 � ��c − 0.5091503� + 5 � 10−7

� �1/� + 1/0.0151� . �23�

In order to take into account corrections due to the free
boundary conditions of the thin film we use the ansatz

E�L0� = �L0 + Lsns�Ens + cfL0,ef f
−d+1+1/� �24�

to fit the data given in Table I. As input we have used �
=0.6717�1�,3 Ens given in Eq. �23� and Ls=1.02�7�.19 The
parameters of the fit are Lsns and cf. Fitting all data with L0

8 we get an acceptable �2 per degree of freedom. We find
Lns=−1.3529�3� when fixing Ls=1.02 and Lns=−1.3523�3�
fixing Ls=0.95. Hence Lsns is clearly different from Ls and it
shows little dependence on the value taken for Ls. We have

checked that the error of Lsns due to the uncertainties of � and
Ens can be ignored.

B. Taking into account boundary corrections

The boundary correction LnsEns should be an analytic
function of the reduced temperature. In a first attempt we
shall approximate it by its value at the critical point of the
three-dimensional system found above. Hence in Fig. 6 we

plot ẼexL0,ef f
2 �L0,ef f /�0�−1/�, where

Ẽex = E�L0,t� − L0,ef fEbulk�t� + �Ls − Lsns�Ens �25�

as a function of x= t�L0,ef f /�0�1/�. Now we see a quite good
matching of the three curves. Only for small x discrepancies
are visible.

Next we have computed the finite-size scaling function �
of the Casimir force following Eq. �18�. In the case of L0
=8 and L0=16 we have used the function h��x� as given in
Fig. 6. In the case of L0=32 we have taken the missing part
in the range −5.9�x�−9.1 from the results for L0=16. To
this end we have matched the values of the function at x=
−5.9 and x=−9.1 resulting in h32� �x�=h16� �x�+0.011
−0.002�x+5.9� for −5.9�x�−9.1. We have computed the
function h�x� by numerically integrating h��x� using the trap-
ezoidal rule. For sufficiently large x the Casimir force van-
ishes and therefore h�x�= x

2�h��x�. Hence for large x,

h��x� = cx2�−1. �26�

In Ref. 20 we found that the thermodynamic Casimir force is
of similar size or smaller than the numerical errors that we
achieve for x�4. We have checked that in this range the
scaling function h��x� of the excess energy indeed follows
Eq. �26�.

Hence we have started the numerical integration in the
high-temperature phase at x0�4 with the starting value
h�x0�=

x0

2�h��x0�. In order to check the reliability of our result,
we have redone the integration using a set of data points,
where we have skipped every second value of �. We found

TABLE I. The energy density E /L0 of thin films of the thickness
L0 at the inverse critical temperature �c=0.5091503�6� of the three-
dimensional systems. In all cases L=6L0.

L0 E /L0

8 0.799566�31�
12 0.832786�19�
16 0.850727�13�
24 0.8698028�85�
32 0.8798552�57�
48 0.8903321�37�
64 0.8957662�29�
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FIG. 6. �Color online� We plot ẼexL0,ef f
2 �L0,ef f /�0�−1/� as a func-

tion of t�L0,ef f /�0�1/� for L0=8, 16, and 32 for free boundary con-
ditions. For a discussion see the text.
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an agreement within the statistical errors. Our results for �
are plotted in Fig. 7. In the range −7�x�5 the curves ob-
tained from the different values of L0 match quite well. There
is also a good match with � obtained in Ref. 20. In particular,
the value and the position of the minimum of � are com-
pletely consistent. However for x�−7 the difference be-
tween the curves becomes clearly visible and increases with
decreasing x. For small x, even for L0=32 there is a huge
discrepancy with the result of Ref. 20.

Since these discrepancies appear for large values of �x� it
is likely that they are mainly caused by analytic corrections.
To check this explicitly, we allowed for two different types
of corrections,

x = t�1 − ct��L0,ef f/�0�1/� �27�

and for a temperature dependence of the boundary correction
of the analytic part of the energy

Ẽex = E�L0,t� − L0,ef fEbulk�t� + �Ls − Lsns�Ens − cbt . �28�

We find that the curves for h��x� obtained from L0=16 and
L0=32 can be nicely matched by adjusting the two param-
eters c and cb. Matching in the interval −18�x�3 we find
c�−1.1 and cb�−3.03 and for the interval −25�x�5 c
�−0.75 and cb�−2.97. Using the corresponding results for
h��x� we have computed the finite-size scaling function ��x�
that is plotted in Fig. 8. Now we see that the range of the
matching with our previous result20 is extended to
−15�x�4 in the case of the matching range −25�x�4.
For still smaller values of x discrepancies rapidly increase.
Likely higher-order analytic corrections are the main reason
for this behavior. However also other types of corrections
such as t�� with ��1.8 �Ref. 37� should be taken into
account. Therefore we abstain from fitting with t2 correc-
tions.

VI. SPECIFIC HEAT OF THIN FILMS OF 4HE AND THE
THERMODYNAMIC CASIMIR FORCE

In a number of experiments the excess specific heat of
thin films of 4He and 3He-4He mixtures has been measured
in the neighborhood of the � transition.11 In these works the
scaling function f2 which is defined by

Cbulk�t� − C�L0,t� � L0
�/�f2�tL0

1/�� �29�

is extracted from experimental data for the specific heat of
the three-dimensional bulk system Cbulk�t� and of thin films
C�L0 , t�, where L0 is the thickness of the film. Since the
specific heat is the derivative of the energy density with re-
spect to the temperature, f2�x� is, up to a constant factor,
equal to h��x�.

To compute this factor let us start from the excess reduced
free energy density,

f�t,L0� − fbulk�t� � L0
−3h�x� , �30�

where t=T /T�−1 and x= t�L0 /�0�1/�. Note that here, as long
as the free energy density and L0

−3 are measured in the same
units, h�x� is uniquely defined; there is no ambiguous factor.

The excess energy density is given by the derivative with
respect to �=1 / �kBT�. Hence

E�t,L0�/L0 − Ebulk�t� = − L0
−3�L0/�0�1/� 1

kBT�

�−2 �

− L0
3�L0/�0�1/�kBT�, �31�

where we have approximated �−2�kB
2T�

2 in the neighbor-
hood of the � transition. The specific heat as defined in the
experiments is given by the derivative of the energy density
with respect to the temperature. Hence

Cbulk�t� − C�t,L0� � kBL0
−3�L0/�0�2/�h��x� . �32�

The results for the specific heat of the experiment are
given in J mol−1 K−1. These we convert into kB Å−3 to get the
same units on both sides of Eq. �32�. Note that the thickness
of the films in Refs. 26 and 27 is quoted in Å−3. To this end
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FIG. 7. �Color online� We plot finite-size scaling function � of
the thermodynamic Casimir force for free boundary conditions. We
have computed � from the finite-size scaling function h� of the
excess energy per area of the film. For comparison we give the
result of our previous work �Ref. 20� where we have computed �
directly from the thermodynamic Casimir force. For a discussion
see the text.
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FIG. 8. �Color online� Similar to the previous figure. Here we
have taken into account the analytic correction computing the scal-
ing function h�. For a discussion see the text.
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we need the density ��=146.1087 kg /m3 �Ref. 38� of 4He at
the � transition, the molar weight 4.0026. . . g mol−1 of 4He
and the Boltzmann constant kB=1.38065. . . �10−23 J K−1.
This amounts to the factor 0.00264. . . J−1 mol K kB Å−3. In
Ref. 39 the data are given as a function of the reduced tem-
perature t=T /T�−1, where T�=2.17. . . K. In order to plot
them as a function of x= t�L0 /�0�1/� we have used �0
=1.422�5� Å which we17 have computed from the amplitude
of the bulk specific heat of 4He at vapor pressure40 and the
universal amplitude ratio R�.31

In Fig. 9 we have plotted

�Cbulk�t� − C�L0,t��kB
−1L0

3�L0/�0�−2/� �33�

as a function of x= t�L0 /�0�1/�. To this end we have used the
data given in Ref. 39 for the thicknesses 483, 1074, 2113,
5039, 6918, and 9869 Å.41

Note that h��0��3.05 as can be obtained from the results
of Sec. 4.3 of Ref. 17. For x�−5 the curves obtained from
different thicknesses of the film fall reasonably well on top
of each other. It has been noticed11 that for x�−5, in par-
ticular, in the neighborhood of the minimum, the results ob-
tained for different thicknesses differ by quite large factors.
In Ref. 17 we have computed the specific heat and the scal-
ing function f2 starting from the data for the energy density
discussed above. We find that for x�−5 our final result is
clearly smaller than the experimental ones.26,27

Starting from the results for the finite-size scaling func-
tion h��x� obtained from different thicknesses we have com-
puted the scaling function h��x�. To this end, we have applied
the trapezoidal rule. Similar to the previous section, we have
started the integration at x0�4 in the high-temperature
phase. As starting value we have taken h��x0�= x

2�−1h��x0�.
Again we have integrated h��x� using the trapezoidal rule to
get h�x�. Here we have taken the same value for x0 as above
and h�x0�= x

2�h��x0�. Using these results for h��x� and h�x�
we have computed ��x� which we have plotted in Fig. 10.

In order to check the effect of errors due to the finite step
size of the integration, we have repeated the integration,
skipping every second value of x. In order to check the effect
of the singularity of h��x� we have fitted the data for the
specific heat in the neighborhood of the transition with the
ansatz

h��x� = 3.05 + c��x�−�. �34�

Then we have integrated the ansatz in the neighborhood of
the transition and compared it with the corresponding result
from the trapezoidal rule. We find that the numerical results
only change little and the conclusions drawn below are not
effected.

Let us now discuss the results that we have obtained: for
483 Å the curve is monotonically decreasing with decreas-
ing x; in particular, no minimum of the function can be ob-
served. For 1074 Å a shallow minimum occurs at x�−5.3;
for x�6.1 the function is decreasing again with decreasing x.
For 2113 Å we see a clear minimum at x�−5.5; however
the value of the minimum is clearly smaller than the one of
Ref. 20. In the case of 5039 and 6918 Å we find a quite
good match with our result20 down to x�−7. For 6918 Å
the minimum is located at x�−4.8 and the value of the mini-
mum is ��−1.3. For 6918 Å the minimum occurs at x
�4.65 and the value of the minimum is ��−1.36. For
5039 Å no data for x�−7 are available. For 6918 Å the
curve is decreasing again for x�−6.7 with decreasing x. Up
to here the expectation that with increasing thickness of the
film the result converges toward the universal scaling func-
tion is fulfilled. However for the largest thicknesses studied,
9869 Å even the worst mismatch is found. The curve is
monotonically decreasing with decreasing x and even for
x�5 there is quite large mismatch with our result for �.20

Playing around with the data, one finds that smaller values of
h��x� for x�−5 are needed to avoid that � is decreasing with
decreasing x for x�−5. One should note that Eq. �8� only
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FIG. 9. �Color online� We plot �Cbulk�t�−C�L0 , t���L0 /�0�−�/� as
a function of x= t�L0 /�0�1/�. The data for thin films of 4He of thick-
nesses 483, 1074, 2113, 5039, 6918, and 9869 Å obtained in Refs.
26 and 27 are taken from Ref. 39. Note that at the critical point t
=0 the finite-size scaling function assumes the value �3.05. For a
discussion see the text.
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cussion see the text.
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holds for the scaling limit. Therefore the observations made
here are not an indication that the experimental data are af-
fected by an error. They can also be explained by corrections
to the scaling behavior. This is at least true for the smaller
thicknesses such as 483 Å. The result for 9869 Å is more
puzzling. One should note that the analysis presented in this
section does not depend on the type of boundary conditions
that is realized in the experiment. But we think that the be-
havior of ��x� for x�−5 obtained here cannot be explained
by different boundary conditions from those used in the
study of the lattice model.17,20

VII. SUMMARY AND CONCLUSIONS

We have studied the relation of the excess specific heat
and the excess energy with the thermodynamic Casimir force
in thin films in the three-dimensional XY universality class.
To this end we have exploited the relation �8�,

��x� = 2h�x� −
x

�
h��x�

among the finite-size scaling functions ��x� of the thermody-
namic Casimir force, h�x� of the excess free energy and h��x�
of the excess energy. We have analyzed Monte Carlo data
obtained for the energy per area of the improved two-
component �4 model on the simple cubic lattice17 and ex-
perimental results for the specific heat of thin films of 4He
near the � transition.26,27

As a preparation we have simulated films with periodic
boundary conditions. In contrast to Dirichlet boundary con-
ditions periodic ones do not cause corrections to finite-size
scaling. Indeed, we find a good collapse of the data for the
excess energy per area already for the rather small thick-
nesses L0=8, 9, 12, and 13 that we have simulated. Further-
more we find good agreement between ��x� computed di-
rectly from the thermodynamic Casimir force, Eq. �6�, and
from the excess energy by using Eq. �8�. We compare our
result for ��x� with previous ones13,14 obtained from simula-
tions of the standard XY model. We find a qualitative agree-
ment between the results. However, for example, for the po-
sition of the minimum of ��x� we find some discrepancy:
While14 quote xmin=−0.73�1� we get xmin=−1.20�5�. Further-
more we find that the � expansion16 provides accurate results
in the high-temperature phase down to x�1.

Next we have analyzed the excess energy per area for
films with free boundary conditions using the data obtained
in Ref. 17. Here we find a huge mismatch between the thick-
nesses L0=8, 16, and 32. Replacing L0 by L0,ef f =L0+Ls with
Ls=1.02�7� �Ref. 19� does not remove this discrepancy. We
argue that the nonsingular part of the energy per area suffers

from boundary corrections that are not described by the same
Ls which accounts for the corrections in singular quantities.
Indeed, the analysis of the energy per area of films up to the
thickness L0=64 at the critical temperature of the three-
dimensional system results in a Lsns for the analytic back-
ground of the energy per area that is clearly different from
Ls. Taking into account this result we find a reasonable col-
lapse of the finite-size scaling functions obtained from L0
=8, 16, and 32 in a large range of the scaling variable x.

Computing the Casimir force from this result for h��x� we
find a good collapse for −7�x�4. In this range of x we also
find a good agreement with the result for � that we have
obtained in Ref. 20. Note that, in particular, the minimum of
the scaling function � is within this range. We confirm the
position xmin and the value �min that we have obtained in Ref.
20. Next we took into account analytic corrections. The co-
efficients of these corrections were computed by matching
the results obtained from L0=16 and L0=32. This way we
could extend the range of agreement with our previous
result20 down to x�−15. This nice agreement gives us fur-
ther confidence in the correctness of both � computed in Ref.
20 as well as f2 obtained in Ref. 17.

Finally we have computed the scaling function � using
experimental results for the excess specific heat.26,27 Here we
find a reasonable match with the theoretical results in the
range x�−5. Only for four of the thicknesses a minimum is
observed. These minima are located at xmin�−5 which is
consistent with our prediction20 but slightly larger than xmin
=−5.45�12� �Ref. 24� and xmin=−5.7�5�,25 where the thermo-
dynamic Casimir force has been determined for films of 4He
with thicknesses �600 Å. In the range x�−5 the curves
obtained from different thicknesses show quite different be-
havior. For the thicknesses 483 and 9869 Å the estimate of �
is monotonically decreasing with decreasing x. But also for
the thicknesses 1074 and 6919 Å, eventually for smaller x
the estimate of � is decreasing with decreasing x. It is quite
clear that this behavior is incorrect; it would mean that the
thermodynamic Casimir force blows up with decreasing tem-
perature. This is implausible and also ruled out by the ex-
periments on the thermodynamic Casimir force.24,25 One can
figure out that this strange behavior of the estimate of �
corresponds to too large values of h��x� in the range x�−5.
Understanding this problem requires a detailed discussion of
the experiments and is therefore beyond the scope of the
present work.
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